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Assimilation of satellite ocean color data is a relatively new phenomenon in ocean 
sciences. However, with routhe observations &om the Sea-viewing Wide Field-of-view 

Sensor (SeaWiFS), launched in late 1997, and now with new data from the Moderate 
Resolution h q p g  SpectroraQometer (MODIS) Aqua, there is increasing interest in ocean 
color data assimilation Here SeaWiFS chlorophyll data were assimilated with an 

thredimaiod global ocean model. The assimilation improved estimates of 

ruzd primary w o n  relative to a free-run (no assimilation) model. This 
r e m  the first at.Eempt at ocean color data assimilation using NASA satellites in a global 

results suggest the potential of assimilation of satellite ocean chlorophyll data 
models. 
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Abstract. 
Sea-viewing Wide Field-of-view Sensor (SeaWiFS) chlorophyll data were assimilated with 

an establishd threedimensianal global ocean model. The asshhtion improved estimates 

of chlorophyll relative to a he-m (no assimilation) model. Compared to SeaWiFS, mual 
RMS log mor ofthe assimilaticm model was 7.7%. The fieem model had an RMS log 

m r  of 23.8%. In situ data were compared to the asshhlkm model over a &year t h e  

period fiam 1998 through 2003, generating an RMS log error of 28.4%, with a bias of 0.9% 

for datEy ooincidept, w-1- data. SeaWiFS RMS log error was nearly identical at 26.5% 

with and similarly mghgible bias at 0.6%. The he-run RMS log error and bias at 43.4% 

and -5.496, mspxtively, i n d i d  how much the assimilation improved model results. 

h u a l  primary production estimates far the 1998-2003 period produced a nearly 50% 

improvement by the assimilation model over the b r u n  model as compared to a widely 

used algorithm using SeaWiFS chlarophyll data. These results suggest the potential of 

assimilrvtion of satellite ocean chlorophyll data for improving models. 

In 
Assimilation of satellite ocean color data is a relatively new phenomenon in ocean 

sciences. However, with routine observations from the Sea-viewing Wide Field-of-view 

Sensar (SeaWiFS), launched in late 1997, and now with new data from the Moderate 

Resolution Imaging Spectroradiometer (MODIS) Aqua, there is increasing interest in ocean 
color data assimilation. The main motivations for assimilation are: 

1. ParameterEstimation 

2. State and Flux Estimation 

3. Prediction 
Virtually all work in marine biological applications up to now has focused on the first two 

motivations. SeaWiFS has been used for parameter estimation in O-dimensional models of 

the Equatorial Pacific (Freidrichs, 2002) using the adjoint method and the North Atlantic 

(Hemmhgs et al., 2003; 2004) using other variational methodologies. Garcia-Goniz et al. 

(2003) developed a 3-dimensiond model of the Adriatic Sea and used SeaWiFS data for 

both parameter and state estimation, using the adjoint method. Natvik and Evensen (2003) 
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took a different approach fa state estimation only, using SeaWiFS chlorophyll data with an 

Ensemble Kalman Filter assimilation in a threedimensional model of the North Atlantic. 

These initial efforts of data assimilation with modem ocean color satellite data, as well as 
earlier experiments with nudging (Armstrong et al. (1995) and insertion (Ishizaka, 1990) 
with the histoaioal sensor, the Coastal Zone Color Scanner, have suggested the potential for 
using data iwidation and remote sensing to improve model parameterization and results. 

Studies with in situ data (e.g., Schlitzer, 2002; Spitz et al., 2001; schartau and Oschlies, 
2003; Lawson et al., 1996) as well as simulated data (e.g., Eknes and Evensen, 2002; 

Gunson et al., 1999) have fhrther bolstered the case for utilizing assimilation for marine 

biological modeling. 
Here ~ l l  existing ooupled general circulation, biogeochemical, and radiative model of the 

global oceans is 4 as a platform to assimilate SeaWiFS chlorophyll data products. The 

emphasis is on state and flux estimation; specifically, improved estimates of surface 

chlorophyll and ckpth-integratd primary production, respectively. Quantitative measures 
and statistid analyses are utilized to evaluate the effects of data assimilation in a global 

context. 

coupled Z4remdnal  C V r c u l a t i o M w g m h e & ~ ~  Model of the Gbbd 

ocean 
A diagrammatic representation of a fully coupled general circulation/ 

biogeochemicdhdiative model, called the NASA Ocean Biogeochemical Model (NOBM), 
illustrates the complex interactions among the three major components, ocean general 

circulation, radiative, and biogeochemical processes models (Figure 1). The Ocean General 

Circulation Model (OGCM) is a reduced gravity representation of circulation fields (Schopf 

and Loughe, 1995). It is global in scale, extending from near the South Pole to 72' N, in 

increments of 2/3' latitude and 1 114" longitude, comprising all regions where bottom depth 

> 20Om. The model contains 14 vertical layers, in quasi-isopycnal coordinates, and is 

driven by wind stress, sea d a c e  temperature, and shortwave radiation (Table 1). 
The biogeochemical processes model contains 4 phytoplankton groups, 4 nutrient groups, 

a single herbivore group, and 3 detrital pools (Figure 2). The phytoplankton groups differ in 
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maximum growth rates, sinking rates, nutrient requirements, and optical properties. The 4 

nutrients are nitrate, regenerated ammonium, silica to regulate diatom growth, and iron. 
Phytoplankton are hgestd by a single herbivore component. Three detrital pools provide 
for starage of organic material, sinking, and eventual remineralization back to usable 

nutrknts. This results in 12 state variables in the fully coupled model. Atmospheric 
deposition of iron and sea ice fields are required as an external forcing fields (Table 1). The 

b iogeo&dd  pocesses model is described fully in the Appendix. 

Radialive tran&er calculations provide the underwater irradiance fields necessary to drive 

growth of the phytoplankton groups, and interact with the heat budget. The Ocean- 

Atmosjhm Radiative Model (OARM, Ciregg, 2002a) contains a treatment of the spectral 

and directional propties of radiative trausfer in the oceans, and explicitly accounts for 

clouds. The atmospheric radiative model is based on the Gregg and Carder (1990) spectral 

model, atended to the spectral regions 200 nm to 4 pm. It requires extmal monthly 

climatologies of cloud properties (cloud mer and liquid water path), fluface pressure, wind 

speeds, relative humidity, precipitable water, and ozone (Table 1). Aerosols are considered 

to be 5tridyof marine OK@ and are computed as in Gregg and Carder (1990). 

Ocesmic d a t i v e  Irroperties are driven by water absorption and scattering, the optical 

properties of the phytoplankton groups, and chromophoric dissolved organic mattm 
(CDOM). Three irradiance paths are enabled: a downwelling direct path, a downwelling 

diffuse (satered) path, and an upwelling diflbse path. All oceanic radiative calculations 
include the spedral nature of the irradiance. 
DatizAsdmdMon 
The data assimilatian methodology used here is the Conditional Relaxation Analysis 

Method (CRAM, Oort, 1983). The method is used for bias correction in optimal 

Interpolation Sea Surface Temperature (OISST) data (Reynolds, 1988; Reynolds and Smith, 

1994), and has been used successfully for ocean color in situ-satellite applications (Gregg 

and Conkright, 2001; 2002; Conkright and Gregg, 2003). CRAM uses data insertion to 

provide an internal boundary condition, which here is the satellite ocean chlorophyll and 

solves for an analyzed chlorophyll field of model and data 
v2c= VZCM 
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what C is the final d y a d  field of chlorophyll and CM is the model field (sum of the 4 

phytoplankton group). hertion of satellite chlorophyll serves a biasarrection capability. 

The matching of L a p ~ s  of the model chlorophyll and model/satellite chlorophyll 
extends the bias d o n  away from the satellite data points, while maintaining the higher 
order model variability. Because of the wide range of chlorophyll over the global oceans 
(>3 orders of magthde), model and satellite data were log-transformed (base 10) before 
applidon dEq. 1. The analyzed chlorophyll was transformed back to linear form for re- 

hitiahtiion, and d & i i  among the 4 phytoplankton groups in such a way to retain the 

Data assimilation was performed daily, to remove biases associated with sampling by 

SeaWSS (i.e., cloud cover, sun ght ,  interabit gaps), that are incorporated in 8-day and 

monthly dataproducts. Assimilation occuned at model midnight, 

The daily assimilation required M y  forcing data. These were all from the same sources 

as in Table 1, except at daily t ime-vmg frequencies. Daily wind stresses were weighted 

80:26 perrcent monthly:ddy to minhize trausient high wind events. 

p r e v i W ~ ~ & W ~ C e s .  

CRAM is cumjnhbally very fast, so much that there is nearly negligible additional 

procasing h e  in its use. However, it is very strongly weighted toward the data. Thus data 

errors are a very impOrtaat problem in its application. For this reason, data errors must be 
minimizd t~ the extent possible. In the present application, data error mhimktion efforts 

involved: 

1) All daily SeaWiFS chlorophyll > 2 times the monthly mean were excluded 

2) Monthly mean SeaWiFS data were weighted 25% to 75% daily data 

3) SeaWiFS data occurring within a model grid point containing ice were excluded 

4) Regional weighting of model and SeaWiFS chlorophyll was dorced (Figure 3) 
The fourth data error minimization was based on analyses by &egg and Casey (2004) 

indicating regiomwhere SeaWiFS tended to perform poorly compared to in situ data. It 

was also partly based on assimilation trial-and-error: where the assimilation produced 

negative values of any of the model variables or where unrealistic values occurred, heavier 

weighting toward the model was enforced. Typically the two conditions overlapped. For 

example, excessively high chlorophyll concentrations were produced by the assimilation in 

the Congo and A m m d h m  River discharges. These are regions dominated by CDOM, 
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which produce mmeous chlorophyll values in satellite retrievals. These regions were 

shown to bave a poor comparison with m situ data (Gregg and Casey, 2004). Similar 
problems occurred with respect to regions where absorbing dust is prevalent, such as the 

tropical Atlantic and North and Equatorial Indian Oceans (Gregg and Casey, 2004). The 

r e g i d  modd weighting fkctom used in the assimilation are shown in Figure 3. There 

were thnee miations on regional weighting that were applied seasonally. All three are 
showninFigure3. 
DatrrSels 

Globel chiorophyll data h m  SeaWiFS were obtained from the NASA Goddard Earth 

Science Disbribplted A.ctive Archive Cbter  (GES-DAAC) site at daily and monthly, 9-km 
resolution. The data set version number was 4.0. The data were re-mapped to the model 

grid before asshihion and comparison. Daily data were used for assimilation; monthly 
data were USBd for anatysis. 

Forciag data sets are shown in Table 1. Soil dust data sets were available only for the 

period Jm 2000 through JWl2002. climatologies were created to provide data when needed 

outside this period. SimiEariy, ISCCP cloud data were only available for Jan 1997 through 
Sep2001. Againdim~es~createdtofil ldatagapperiods.  
In situ chlorophyll datawere obtabdfiorn the SeaWiFS Bio-optical Archive and Storage 

Systean (SeaBASs; W d  and Bailey, 2002) and the NOMational  Oceanographic 

Data Center (NODC)/Ocean Climate LaboratoIy (OCL) archives (Conlaight et al., 2002a). 

This was an updated version of the Same combined data set used by &egg and Casey 

(2004). The in situ data were remapped to the model grid on a daily basis. 

Ana&& 
SeaWiFS chlorophyll assimilation was evaluated in the context of chlorophyll (state 

estimation) and primary production (flux estimation). In both cases, assimilated fields were 

compared to those fiom a free-m model (no assimilation but using the same startup 

distributions and forcing data). For primary production, fiee-m model-computed primary 

production was compared with modelcomputed primary production derived from 
assimilated chlorophyll and finally against primary production derived directly h m  satellite 

chlorophyll data using the Vertically Generalized Production Model (VGPM, Behrenfeld 

and Fallrowski, 1997). 
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Analyses involved use of what is defined here as the Annual Root Mean Square Log 

Error: 

z RMS," - 
R W n n  (3) 

12 
where RMS,, is the monthly RMS log error (computed by comparing monthly mean 

model chlorophyll derived fiom assimilation (Cmh) with monthly mean SeaWiFS 

chlorophyll (Cd), n is the number of co-located assimilation and SeaWiFS chlorophyll 

values for each month, and RMS, is the annual RMS log error, which is simply the mean 

of the monthly RMS log errors over 12 months of a year. This methodology keeps the sense 

of the monthly deviations of the assimilation fiom SeaWiFS, unlike comparing data fkom an 

annual mean, while producing a single value over an entire year. 

L 

Assimilation model mual RMS log errors were evaluated by comparison with those fiom 

the he-run (control) model. The assimilation frequency was also adjusted, by assimilating 

every 2 days, 3 days, etc. instead of daily assimilation, to observe error growth. 

Additionally, SeaWiFS, fiee-run model, and assimilation model chlorophyll were 

compared against the large data base of in situ chlorophyll data fiom NASNSeaBASS and 

NOANNODC. Analyses involved use of the RMS log error defined similarly to the 

monthly analysis define in Eq. 2 except compiling all dady data over the 6-year time span 

into a single representation of RMS log error, where in situ data and satellite/model data 

were coincident and co-located. Bias is defined as the mean error the daily coincident, co- 

located in situ and satellite/model data 
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primary production provided a means to evaluate the ability of the assimilation model to 

improve flux esthaks . pritnsry w o n  was computed in the model as a function of 

growth rate multiplid by the carbon:chlmophyll ratio: 

where is the realizsd new growth raQe of phytoplankton component i, C, is the chlorophyll 

Concentrortian of cornpcmmt i, @ is the cat.bon:chlorophyll ratio, and the product is 

integrated o m  depth. Assimilation of chlorophyll affected the total chlorophyll but not the 

relative abundeooes of the p;hytoplaakton groups, p, or 0 directly. All three can be afikcted 

by the assimilation of daqhyl l  indirectly, however, by changing the irradiance in the 

water cdumn and the horizontal and vertical gradients of phytoplankton and nutrients. 
Primary production compubed by the $ree-run model and the assimilation model were 

i n m p a r e d ,  and atso w e  evaluatad against an independent estimate by the VGPM. The 

VGPM requh.es chlarophyll, SST, and photosynthetically available radiation (PAR) as 
inputs. Chlorophyll was taken h m  SeaWiFS, SST was the same source as used for model 

forcing (Table l), and PAR was derived fiom the atmospheric component of OARM, with 

wavelength region 350-700 nm seleded and converted to quanta. 

PP=j CpiG 0,dz (5)  

Results and Discussion 
NOBM 

Minor changes in NOBM (see Appendix) necessitated evaluation to ensue its 

perfommce did not degrade fiom Gregg et al. (2003). In the 50& year of model execution 

using climatological monthly forcing, basin-scale seasonal chlorophyll variability from the 

model was statistically positively correlated (P 0.05) with those determined from 

SeaWiFS monthly climatological chlorophyll in each of the 12 major oceanographic basins 

of the world, (see Figure 3) except the Equatorial Pacific, whlch exhbited very little 
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seasonal variability. Global annual chlorophyll was 18.2% lower than SeaWiFS, with an 

annual RMS log error of 25.4%. Annual mean log-tramfmed dissolved iron 
concentraths in the model surface layer were positively correlated with observations (F' < 
0.05) over the 10 (out of 12) major oGeanographic basins where data were available (1951 in 
situ data d daived I6rom the general literature)). The basins where dissolved iron data 

were lacking were the south Indian and South Atlantic (see Figure 3). 
Overall patterns of phytupiankton functional group distn'butions exhibited broad 

qualitative qpement with in situ data (359 surface layer observations). Three of the four 
phytoplankton groups exhibited &tistidly sipficant correspondence across basins. 

Chloropbytes did not. CNorophybs are a transitional group in the model, and they represent 

a wide range of phytopl- such as flagellates, Phaeocystis spp., etc. This expectation is 

probably unrealistic, which accounts for the lack of statistical signdicance in their relative 

abundances. However, it is encouraging that diatoms, cyanobacteria, and coccolithophore 

annual m e a  relative abtmdmces were &itistically positively correlated with data. 

seawoFsAsslmilatlsA 2 m  
Model execution for 2001 using daily fming was used to evaluate the effectiveness of 

chlorophyli assimilatim. Basin-scale seasonal variability for both the free-run and 

assimilation models were statistidy positively correlated with SeaWiFS in all 12 major 

basins, but the conrelafiofl d c i e n t s  for the assimilation model were much higher (Table 

2). This suggests the lack of s idcance for the Equatorial Pacific in the climatological 
model was due to use of climatological forcing. 

Daily assimilated satellite chlorophyll from SeaWiFS for A@ 1 compared favorably with 

monthly mean SeaWiFS data (Figure 4). Although there was broad agreement between the 

free-run model and SeaWiFS monthly, the improvement using assimilation was clear. 

SeaWiFS chlorophyll for the same day as the free run and assimilated models is also shown, 

but because of cloud obscuration, sun gh t ,  a sensor tilt change, and inter-orbit gaps, it is 

difficult to evaluate the comparison. This illustrates the additional usefulness of 

assimilation, in providing complete daily cwerage. 
A more quantitative description of the effectiveness of assimilation is provided using 

monthly means of the assimilation model and SeaWiFS, and taking the difference (Figure 

5). For March 2001, the overall similarity of the assimilation and SeaWiFS was evident, 
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and largely supported by the difference field. The largest differences occurred in the 
Arabian Sea, the Congo mouth, and the Mauritanian coast. All of these are by design in the 

assimilation model, with model weighting factors largest in these areas of low confidence in 

SeaWiFS. In all cases the differences were underestimates by the assimilation model, which 

is desired. Other smaller differences occurred in the northern extremities of the North 

Atlantic, the Pacific in the extreme western edge of the Bering Sea, and in the Atlantic 

sector of the Southern Ocean. Again the differences were underestimates by the 

assimilation. Overestimates by the assimilation were generally small (0.01-0.05 mg m-3 

chl). A couple of notable exceptions were offshore of the Somalian coast, and the east- 

central Indian Ocean, where overestimates by the model of 0.05-0.1 mg m-3 occur. 

Similar results occurred for Sep 2001 (Figure 6). Again the overall agreement between the 

assimilation model and SeaWiFS was good, with disparities in similar regions, specifically 

the Congo and Orinoco River outflows, the Arabian Sea, and the upper northern latitudes. 

There was a band in the Equatorial Atlantic where the assimilation model overestimated 

SeaWiFS, that did not appear related to the Congo River. 

The growth of error as a function of assimilation frequency was tracked using the annual 

RMS log error (Figure 7). Using daily assimilation, the annual RMS log error was 7.7% 

relative to SeaWiFS, which was a very large improvement over the error for the free-run 

model at 23.8%. The mor grew as the assimilation fiequency decreased. It was still 4 0 %  

if the assimilation occurred every 3 days. It stayed below 15% for assimilations occurring 

every 10 days or less. At the other extreme, very low assimilation frequencies, the annual 

RMS log error approached the free-run model. The lowest assimilation frequency was once 

per year (every 183 days) for which the error is indistinguishable from the free-run model. 

Sea WiFS Assimilation 199 7-2003 
A long-term run of the fiee-run model and the assimilation model for 1997-2003 using 

monthly forcing illustrates the improvement of assimilation in the major oceanographic 

basins (Figure 8). The free-run model produced seasonal variability in good agreement with 

SeaWiFS basin mean chlorophyll, and also good correspondence with low biases in many of 

the basins, such as the North Central Pacific, North Atlantic, Equatorial Pacific, South 

Indian, South Atlantic (Figure Sa). There were several basins where a substantial bias was 

apparent in the free-run model. This was particularly true in the North Indian and Equatorial 
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Atlantic, where a large underestimate by the model occurred, but also in the spring bloom 

peaks in the North Pacific and Antarctic basins, with underestimates and overestimates buy 

the model, respectively. 

The assimilation model kept the seasonal variability agreement with SeaWiFS that the 

free-run model demonstrated, but additionally reduced the basin mean biases (Figure 8b). 

The Antarctic and North Central Atlantic, which in the free-run model exhibited substantial 

biases, were now in nearly complete agreement. The large departure in the North Central 

Atlantic in autumn 1998 cOtreSpOnded to a massive dust plume arising from northwestern 

Afi.ica that was apparently undetected by the SeaWiFS processing algorithms (Gregg, 

2002b). It was excluded by the assimilation here. The North Indian and Equatorial Atlantic 

showed improvement in the assimilation model, but still underestimated SeaWiFS. Model 

weighting hctors were very high in these basins because of low confidence in SeaWiFS 

data (Gregg and Casey, 2004). 

The assimilation model continued to underestimate the North Atlantic and North Pacific 

spring bloom maximum (Figure 8b). In the North Atlantic, the underestimation appeared to 

be worse in the assimilation than in the free-run model. However, the distribution of 

chlorophyll over the North Atlantic was improved by the assimilation, as noted earlier 

(Figure 4). The very high spring bloom peaks in SeaWiFS in the North Pacific were not 

simulated well by either the b i u n  or assimilation models. Most of the high values were 

derived from extremely high SeaWiFS chlorophyll in the western Bering Sea, near 

Kamchatka. 

A detailed comparison of the models with in situ data again showed major improvement 

by assimilation. RMS log error of the SeaBASS/NODC in situ chlorophyll archive against 

SeaWiFS was 26.5%, with a nearly negligible bias of 0.6% (Table 3). The free-run model 

performed much more poorly against the in situ data set than SeaWiFS: 43.4% RMS log 
mor and -5.4% bias. The assimilation model was only slightly worse than SeaWiFS 

compared to the in situ data set, with a 28.4% RMS log error and 0.9% bias. More 

importantly, the assimilation model (as well as the free-run model) had more than twice the 

number of coincident, co-located in situ/model matchup data points. This is a consequence 

of the absence of gaps in the model record in contrast to SeaWiFS. 
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Global annual primary production estimates from three sou~ces, the VGPM, h r u n  

model, and asimbtion model, indicated reasonably good comspondence over the 6-year 

time saies for which SeaWiFS data were used in this effort (Figure 9). hterannual 
variability was mimicked among all three estimates, with a slight departure in 2003, when 

the fb run model mdicated a slight increase fiom 2002, while the VGPM indicated a slight 

decrease. The assimilatian model indicated very little change. The mean of the 6-year time 

series indicated that the b r u n  model overestimated PP as derived fiom VGPM by nearly 

14%. The assimilatioa model reduced the overestimate by nearly half, producing a more 

minor owestimate of 7.2%. . 

Summary 
Assimilatim of chlorophyll data fiom SeawiFS exhibited substantial improvements over 

fiee-run simulations. Biases in basin means were reduced, and annual RMS log mors 

mped to SeaWiFS were much lower for the assimilation model (7.7%) than the fiee-m 

model (23.8%). This represented a 3-fold improvement. When compared to in situ data for 

the &year time period fkom 1998 through 2003, the assimilation model had an RMS log 

mor of 28.4%, with a bias of 0.90/0 for daily coincident, co-located data. SeaWiFS RMS log 

error was slightly lower at 26.5% with and similarly negligible bias at 0.6%. The fkee-run 
RMS log emlr and bias at 43.4% and -5.4%, respectively, indicated how much the 

assimilation improved model results. Annual primary production indicated a smaller 

improvement (mean d i f f e r a ~  from VGPM=7.2% for the assimilation model versus 13.8% 

for the fiee-run model), representing an improvement of nearly a factor of 2, assuming the 

validity of the VGPM. These results suggest promise for assimilation of satellite ocean 
chlorophyll into global models. But they also point to areas of needed improvement. The 

fact that the assimilated variable shows the most improvement is not surprising, and is an 

importaut attribute for data assimilation. The fact that flux (primary production) exhibited 

less improvement than biomass (chlorophyll) using assimilation suggests the model 

continues to trend in the wrong direction despite assimilation. It also suggests that similar 

results may be expected for other non-assimilated variables, such as phytoplankton group 

distributions and nutrients. There remains considerable work to be done on assimilation of 

satellite ocean color, such as better handling of ocean color data errors, utilizing other model 
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variables in a multi-variate solution, accounting for subsurface changes, as well as 
itlvestigating the potential for using other ocean color products, such as diffuse attenuation 

coefficient at 490 nm, and potentially new products such as particulate organic carbon and 

calcite. Nevertheless, there is much potential in ocean color assimilation, and this effort is 

intended to represent an initial attempt on a global scale. 
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Table 1. Forcing data sets reqymd to force NOBM, their purpose, and sources of data. 
NCEP is the National Center for Environmental Prediction, TOMS is the Total Ozone 
Mappiug Spectrometer, ISCCP is tbe International Satellite Cloud Climatology Project, 
OISST is the Optimum Interpolated Sea Surface Temperature product, and GOCART is the 
Global Ozone chemistry Aerosol Radiation and Tmusport model (Ginoux et al., 2001). 
Daily data are used far the 2001 assimilation analyses, and monthly data are used for the 
1997-2003 dw. 
General CK-m Model 

Wind dress * f h g  

Shdwavediation surf~forcing 

Variable Purpose 

S€Xisurfaoeteanperatru.e SurEaoe forcing 

Biogeochemical Process Model 
Variable Purpose 
A e r d  composition SUrEace input (iron) 
sea ice s* forcing 

Radiative Transfix Model 
Variable purpcwe 
Wind speed Swfise reflectance/Aerosols 
Precip&&lewater Water vapor absorption 
surfaceppessure Qr absorption/Rayleigh scattering 
Relative humidity Marine aerosols 
Ozone Gaseous absorption 
Cloud cover Cloud distribution 
Cloud liquid water path Cloud attenuation properties 

Source 
NCEP Reanalysis 
OISST 
NCEP Reanalysis 

Source 
GOCART 
OISST 

Source 
NCEP Reanalysis 
NCEP Reanalysis 
NCEP Reanalysis 
NCEP Reanalysis 
TOMS 
ISCCP 
ISCCP 

- 1 5 -  



Table 2. Mean annual basin difference fiom SeaWSS for the free-run and the assimilation model, 
and the correlation coefficients (r) for the correlation with SeaWiFS seasonal variability for 2001. 
An asterisk indicates the comelation is significant at P4.05 

Basin 
North Atlantic 
North PacSc 
North Central Atlantic 
North Central M c  
North Indim 
Equatorial Atlantic 
Equatorial Pacific 
Equatorial Jndian 
South Atlantic 
South Pacific 
south Jndian 
Antarctic 

Free== Model 
Difference r 
-40.4% 0.888* 
-43.9% 0.623* 
-37.1% 0.854* 
27.6% 0.962* 

-67.9% 0.765 * 
-48.2% 0.687* 
-10.8% 0.718* 
-27.4% 0.934* 

9.8% 0.775* 
60.3% 0.660* 
42.6% 0.624* 
6.6% 0.909* 

Assimilation Model 
Difference r 
-22 3% 0.993* 
-29.8% 0.860* 
-20.4% 0.810* 

1.5% 0.995* 
-53.5% 0.822* 

-5.3% 0.975* 
-16.0% 0.977* 
-10.0% 0.979* 

2.4% 0.988* 
5.5% 0.998* 

-9.7% 0.976* 

-29.1% ,o .909* 

Table 3. Statistics for the comparison of SeaBASS/NODC chlorophyll data for the period 1998- 
2003 with Coincident, co-located SeaWiFS, fiee-run model and assimilation model chlorophyll. N 
indicates the number of points where in situ and satellite/model points were coincident and co- 
located. 

RMS log Error log Bias N 
SeaWiFS 26.5% 0.6% 2133 
Free-run Model 43.4% -5.4% 447 1 
Assimilation Model 28.4% 0.9% 447 1 



Appendix. BiogeachemiCrrl processes model description. 
NOBM is based on Gregg et al. (2003). There are several new features in the biogeochemical 
processes model component: 

- new maximurn phytoplankton growth rates at 20°C 

-- full detrital dynamics with 3 components, fuuy coupled to the OGCM 

- a new hula t ion  for the tmpsaturedependence for grazing 

-- a new fmdation for nitrogen fixation for the cyanobacteria component 

-- introduction of dissolved imn scavenging and an increase in atmospheric iron solubility 

-- new nitrogen haWsatmaticm constants for chlorophytes 

-- new iron W - W o n  constants for chlqhytes and cyanobacteria 
Other aspects of the biogeochemical processes model are described in Gregg et al(2003), but are 
providedhere for comple4emss. 

The govemhg equations of the model are 

Phytoplankton 
a -- C = 

at 
i=l=d,iatoms 
i = 2 = chlorophytes 
i = 3 = cyanobackria 
i = 4 = coccolithophores 

V(KVCJ - VaVC, - V<W& C + PiG - gH - SCi 

a 
-- NS = V(KVNs) - V.VNs - bsplCl + rsDs 
at 



Herbivores 

-- H = V(KvH) - V O W  + (l-~)gH - nlH - n2H2 
at 
a 

DN = carbodnitrogen detritus 
Ds = silica detritus 
DI = iron detritus 

where the symbols and values are identified in Appendix Table 1. Bold denotes a vector quantity. 
All biological processes are assumed to cease in the presence of sea ice, which is included as an 

external forcing field. 

Phytoplankton 

The growth formulation includes dependence on total irradiance (ET), nitrogen as nitrate plus 

ammonium (NT), silica (Si - for diatoms only), iron (Fe), and temperature (T) 

Pi = Pmi min[p(ET)i,CL(NT)i,P(Si)i, P(Fe)il P(T)Pi (AW 

where i indicates the phytoplankton functional group index (in order, diatoms, chlorophytes, 

cyanobacteria, and coccolithophores), p is the total specific growth rate (6') of phytoplankton, 



pm is the maximum grow& rate at 2OoC (Appendix Table 1). The term v(&) represents the 
growth rate as a function solely of the total irradiance (pmol quanta m -2 s -1 ), 

ET 
(A1 1) cl(ET) ------- 

(ET kE) 

where kp. is the irradiance at w&ch p = 0 . 5 ~ ~  and e q d s  0.5 Ik, where Ik is the light saturation 

parameter. The nutdent-dqmdat growth terms are 

'remperaturedependent growth is from Eppley (1972) 

pLQ = 1 .066g-20' 

which produces a temperature-growth factor normalized to 20°C. The term p in Eq. A10 is an 

additional adjustment used for the cyanobacteria component that reduces their growth rate in 

cold water (<15OC) 

pi = 1 for the other three phytoplankton components (i=1,2,4). This effect conforms to 

observations that cyanobacteria are scarce in cold waters (Agawin et al., 2000; 1998). The 

cyanobacteria component possesses a modest ability to fix nitrogen from the water column, as 

f33 = 0.0294T + 0.558 (A1 8) 



observed in Trichodesmiwn spp. (Carpenter & Romans 1991). 
expressed as additional growth occurring when nitrogen availability is <(kN)3, 

The nitrogen fixation is 

pfix” O.Zexp(-75C3) (A19) 
where the index 3 indicabx cyanobacteria The biomass dependence represents a progressive 

from nca-N-&ing cyanobacteria to N-fixing bacteria as the total 

&a nitwgea-sbressed conditions. The total N-limited growth rate plus the 

additional grow& &rived from N-fixation is not allowed to exceed the growth rate where total 

nitrogen = No accounting for denitrification is made in the model. 
is s . i m M  by stipulating 3 states: 50, 150 and 200 (pmol quanta rn- 2 1  s- ). 

studies which typically divided experiments into low, medium, and 

high classes of U@t adaptation. Carb0n:chlorophyll ratios (a) correspond to the photoadaptation 

state, to -sent the tendency of phytoplankton to preferentially synthesize chlorophyll in low 

light conditiw to enable more efficient photon capture. The three CD states corresponding to the 

three light states are 25,50 and 80 g g-’. The CD results for diatoms in the model closely mimick 

) results for &atoms. For irradiance levels falling between the three light 
I 

os are liuearlyioterpolated. 
during daylight hours, and then the phytoplankton photoadaptive 

state is classified accodingly. This calculation is only performed once per day to simulate a 

delayed phdgadapthon response. Light saturation constants for the three light levels are 

provided in Appendix Table 1. 
Phytoplankton vector sinking is treated as additional advection in the z-direction, and is given 

at 3loC, representing approximately the maximum. It is adjusted by viscosity according to 

Stokes Law (Csanady, 1986), which is parameterized here by temperature 

w,(T) = w43 1)[0.45 1 + 0.01 78T] 

Coccolithophore sinking rates were allowed to vary as a function of growth rate from 0.3 to 1.4 

m d“ based on observations by Fritz and Balch (1 996). A linear relationship was assumed 

W& = O.752%4 + 0.225 (NU 
where w, is the sinking rate of coccolithophores (m d-I), pm is the maximum growth rate actually 

achieved, and the subscript 4 represents coccolithophores.. 



NUtrienQ 

The diversity in the processes affecting the four nutrient groups requires elucidation in 4 

separate equations, unlike the phytoplankton. All are taken up by phytoplankton growth, with 
silica subject only to diatom uptake (note tbe subsaipt=l in Eq. A4 denoting diatoms). For three 

of the nutrients, nitrate, Silica, and dissolved iron, corresponding detrital pools remineralize to 

return nutrients previously uptaken by phytoplankton. There is no detrital pool for ammonium, 

which is excreted as a function of herbivore grazing, and as a function of higher order ingestion 

of herbivores, represented by the team nzH2 in Eqs. A3, A5, A6, A7, and A9. Dissolved iron also 

has an excretion pathway, but nitrate and silica do not. The nutrient to chlorophyll ratios, 
denoted b in Eqs. A2-A5, are derived from Redfield ratios, which are constant (Appendix Table 

1) and the carban:chlorophyll(@) ratio which is not. 
bn = WC:N 
b, = WC:S 

bi = WC:Fe 

This leads to variable nutrient to chlorophyll ratios in the model. 

As in &egg et al. (2003) dust deposition fields are derived fiom Ginoux et al. (2001). In this 

model, four dust size fiactions are transpofted, corresponding to clay (smallest) and three increasing 

fiactions of silt. The iron content is assumed to vary among the clay and silt fktions as follows: 

clay = 3.5% iron, silt = 1.2?? iron (Fung et al., 2000). Iron solubility is assumed at 2% for all 

fractions, which is toward the low end of current estimates (Fung et al., 2000), but is the same as 
used by Moore et al. (2004). 

Herbivores 

Grazing uses an Ivlev formulation (McGillicuddy et al., 1995), 

R(T) is the maximum grazing rate at 20" C (Rm) adjusted by temperature 

R(T) = Rm[O.06exp(O. 1T) + 0.701 

The temperature-dependence for grazing is more linear than that for phytoplankton, reflecting 

the larger size of their overall community. The grazing represents the total loss of phytoplankton 

to herbivores, as indicated by the summation symbol, but is applied to the individual 



phytoplankton functional groups proportionately to their relative abundances. This enables 

herbivore grazing to adapt the prevailing phytoplankton community. 

The two loss terms in Eq. A6 represent the death of herbivores (nlH) and higher order 

heterotrophic losses (n2H2). These formulations and parameters (Appendix Table 1) were taken 

fiom McGillicuddy et al. (1995). 

Detritus 

Three detrital components represent the three major nutrient elements, carbodnitrogen, silica, and 

iron. The nitrogen detritus is kept as carbon in the model, but since the C:N ratio is constant, it is 

simple to convert' when needed. All are subject to advection, diflksion and sinking. Detrital 

sinking, like phytoplankton sinking, is dependent on viscosity parameterized here in terms of 

temperature, using the Same formulation. Remineralization is also temperature-dependent, but uses 
the phytoplankton growthdependence term Eq. A17. Silica contained in the diatom component of 

phytoplankton is assumed to pass through herbivores upon grazing directly into the silica detritus 

pool. No silica remains in the herbivore component at any time. 

Initial Conditions 
NOBM underwent a spin-up of a total of 50 years under climatological forcing. For the first 

20 years, initial dissolved iron conditions were fiom Fung et al. (2000), and nitrate and silica 

distributions were fiom annual climatologies from National Oceanographic Data Center (NODC; 

Conkright et al., 2002b). Ammonium initial conditions were set to 0.5pM. Initial conditions for 

all phytoplankton groups and herbivores were set to 0.05 mg m-3 chl throughout the entire model 

domain. Initial conditions for detritus were set to 0. AEter 20 years, dissolved iron and detritus 

distributions were retained, while all other fields were reset to their original values. The model 

was run again for 30 years. This methodology enables dissolved iron to reach steady state 

Without adversely impacting phytoplankton group distributions With excessively low initial 

values. 
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Appendix Table 1. NataticW and pafameters and variables for NOBM Values are movided for the 
parameten atxi ranges are provided for the mriab~es. mea a parametes mi& according to 
temperature, the d u e  at a specified tempratwe is shown aud identified. Nutrient/cblorophyU 
ratios are wiable because of ph&&&mndependence, and only the range is shown, 
corresponding to low-, and high-ligbt adaptation, and thdore  also wrr-ding to C:chl ratios of 
20 and 80 g g-'. 

Symbol Param@wNariable Value Units d 
K Diffnsivty Variable m2 s" 
V c3fadiat apenttor none none 
V VmQr velocity Variable m s-' 
L Layer thidmess Variable m 

Phytopranxdon 
WS Vector sinking rate of phytoplankton at 3 1°C 

diatom 1 .o 
cblorophytes 0.25 
cyanobactmia 0.0085 
coccolithophores 0.3-1.4 

m 4' 

IJ 

Ik 

S 

6' Specific growth rate of phytopl. At 20°C 
diatoms 1 S O  
chlorophytes 1.26 

coccolitho phores 1.13 
p o i  quanta m-2 s-' 

Light level: Low (50) Medium (150) High (200) 
diatoms 90.0 93 .O 184.0 
chlorophytes 96.9 87 .O 143.7 
cyanobacteria 65.1 66.0 47.0 
coccolithophores 56.1 71.2 165.4 

cyanobacteiia 1 .oo 
Light Saturation 

Senescence 0.05 6' 

Nutrients w) 
C:N Carb0n:nitrogen ratio 
c:s Carbon: silica ratio 
C:Fe Carb0n:iron ratio 
b Nutrient:chlorophyll ratio 

nitrogen 
silica 
iron 

Nutrient. excretion 
nitrate 
iUllI I lOniUm 
silica 

E 

79.5 
79.5 
1800 

0.3 - 1.0 
0.3 - 1.0 
0.01 - 0.04 

d-i 
0.0 
0.25 
0.0 



A 
kNSS 

M 

iron 
Atmospheric deposition of iron 
Half-saturation constant 

nitrogen 
diatoms 
chlorophytes 
cyanobacteria 
coccolithophores 

diatoms 

diatoms 
chloroph ytes 
cyanobacteria 
coccolithophores 

silica 

iron 

Iron scavenging rate 
Low iron (<O.O6nM) 
High iron d>O.O6nM) 

Herbivores (H) 
R m  
A Ivlev constant 

Maximum grazing rate at 20" C 

n132 Heterotrophic loss rates 

Detritus (0) 

r 

0.25 
0.03-967.0 

1 .o 
0.67 
0.50 
0.50 

0.2 

1 .o 
0.78 
0.67 
0.67 

d-' 
2.0X1O4 
2 .0~10-~  

1 .o 
1 .o 
0.1,0.5 

Wd Vector sinking rate of detritus at 3 1°C 
carbodnitrogen detritus 20.0 
silica detritus 50.0 
iron detritus 20.0 

Remineralization rate at 20°C 
carbodnitrate 
silica 
Eon 

Carb0n:chlorophyll ratio 

0.02 
0.0001 
0.02 
Variable 

6' 

m 6' 

d-' 
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